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ABSTRACT 
As predictive models are increasingly being deployed in high-
stakes decision making (e.g., loan approvals), there has been 
growing interest in developing post hoc techniques which 
provide recourse to individuals who have been adversely 
impacted by predicted outcomes. For example, when an 
individual is denied loan by a predictive model deployed by a 
bank, they should be informed about reasons for this decision 
and what can be done to reverse it. While several approaches 
have been proposed to tackle the problem of generating 
recourses, these techniques rely heavily on various restrictive 
assumptions. For instance, these techniques generate recourses 
under the assumption that the underlying predictive models do 
not change.  In practice, however, models are often updated for a 
variety of reasons including data distribution shifts. There is little 
to no research that systematically investigates and addresses 
these limitations.  

In this talk, I will discuss some of our recent work that sheds 
light on and addresses the aforementioned challenges, thereby 
paving the way for making algorithmic recourse practicable and 
reliable. First, I will present theoretical and empirical results 
which demonstrate that the recourses generated by state-of-the-
art approaches are often invalidated due to model updates.  Next, 
I will introduce a novel algorithmic framework based on 
adversarial training to generate recourses that remain valid even 
if the underlying models are updated. I will conclude the talk by 
presenting theoretical and empirical evidence for the efficacy of 
our solutions, and also discussing other open problems in the 
burgeoning field of algorithmic recourse. 
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